据7月20日消息,为抢抓人工智能发展的重大战略机遇,构筑我国人工智能发展的先发优势,加快建设创新型国家和世界科技强国,国务院印发《新一代人工智能发展规划》(以下简称《规划》)。重点任务方面,《规划》指出,立足国家发展全局,准确把握全球人工智能发展态势,找准突破口和主攻方向,全面增强科技创新基础能力,全面拓展重点领域应用深度广度,全面提升经济社会发展和国防应用智能化水平。一是构建开放协同的人工智能科技创新体系。二是培育高端高效的智能经济。三是建设安全便捷的智能社会。四是加强人工智能领域军民融合。五是构建泛在安全高效的智能化基础设施体系。六是前瞻布局新一代人工智能重大科技项目。
对此,分析人士指出,人工智能被认为是当前最具战略性挑战性的前沿技术领域,随着顶层设计框架搭建完成,产业发展有望持续提速。随着时间的推移,国内人工智能在各个行业的应用将逐步落地,建议关注人工智能应用领域的长期投资价值。
ICCV: IEEE International Conference on Computer Vision
基于以上特点,人脸识别正在被广泛的应用在各个领域。大家在生活中随处都可以看到人脸识别的应用。
局部二值模式(Local Binary Patterns,LBP)
基于人员通行管理的平台系统(功能性产品+后台系统管理)
员工、VIP、访客、陌生人、黑名单等人员权限管理;
“人脸属性识别(Face Attribute)”是识别出人脸的性别、年龄、姿态、表情等属性值的一项技术。
“人脸比对(FaceCompare)”算法实现的目的是衡量两个人脸之间相似度。
可用于图片的合成、动态图片的分析(直播行业鉴黄、鉴暴),通过关键点分析人脸表情情绪。
高位就意味着至少3个以上涨停,这种短期内大幅上涨的股票,成为市场最具诱惑力的股票,于是都想薅一把的投机客加入其中,进而形成股价新的推动力,由于是高位接盘,大幅换手,因此,玩家们的成本是不断推升的,即便是像东兴晋江和平路这样主导行情的玩家,也是在不断对倒,成本自然就不断推升。
深度学习在人脸识别上有 7 个方面的典型应用:基于卷积神经网络(CNN)的人脸识别方法,深度非线性人脸形状提取方法,基于深度学习的人脸姿态鲁棒性建模,有约束环境中的全自动人脸识别,基于深度学习的视频监控下的人脸识别,基于深度学习的低分辨率人脸识别及其他基于深度学习的人脸相关信息的识别。
近年来,全球学界愈来愈关注中国人在计算机视觉领域所取得的科研成就,这是因为由中国人主导的相关研究已取得了长足的进步——2007 年大会共收到论文 1200 余篇,而获选论文仅为 244 篇,其中来自中国大陆,香港及台湾的论文有超过 30 篇,超过大会获选论文总数的 12%。作为最早投入深度学习技术研发的华人团队,在多年布局的关键技术基础之上,香港中文大学教授汤晓鸥率领的团队迅速取得技术突破。2012 年国际计算视觉与模式识别会议(CVPR)上仅有的两篇深度学习文章均出自汤晓鸥实验室,而在 2013 年国际计算机视觉大会(ICCV)上全球学者共发表的 8 篇深度学习领域的文章中,有 6 篇出自汤晓鸥实验室。
(3)产品文档
1.4 直观
(2)难点:2D和3D的识别检测、真人与蜡像、硅胶假冒人脸识别、照片和真人识别检测验证等。
(韶钢松山分时图)
“人脸配准(FaceAlignment)”所实现的目的是定位出人脸上五官关键点坐标。当前效果的较好的一些人脸配准技术基本通过深度学习框架实现。这些方法都是基于人脸检测的坐标框,按某种事先设定规则将人脸区域抠取出来,缩放到固定尺寸,然后进行关键点位置的计算。另外,相对于人脸检测,或者是后面将提到的人脸特征提取的过程,人脸配准算法的计算耗时都要少很多。
由耶鲁大学计算视觉与控制中心创建,包含 15 位志愿者的 165 张图片,包含光照、表情和姿态的变化。
♡
《规划》提出六个方面重点任务:一是构建开放协同的人工智能科技创新体系,从前沿基础理论、关键共性技术、创新平台、高端人才队伍等方面强化部署。二是培育高端高效的智能经济,发展人工智能新兴产业,推进产业智能化升级,打造人工智能创新高地。三是建设安全便捷的智能社会,发展高效智能服务,提高社会治理智能化水平,利用人工智能提升公共安全保障能力,促进社会交往的共享互信。四是加强人工智能领域军民融合,促进人工智能技术军民双向转化、军民创新资源共建共享。五是构建泛在安全高效的智能化基础设施体系,加强网络、大数据、高效能计算等基础设施的建设升级。六是前瞻布局重大科技项目,针对新一代人工智能特有的重大基础理论和共性关键技术瓶颈,加强整体统筹,形成以新一代人工智能重大科技项目为核心、统筹当前和未来研发任务布局的人工智能项目群。
“人脸识别(Face Recognition)”是识别出输入人脸图对应身份的算法。
(1)简介